33 research outputs found

    Anisotropy Control in Photoelectron Spectra: A Coherent Two-Pulse Interference Strategy

    Full text link
    Coherence among rotational ion channels during photoionization is exploited to control the anisotropy of the resulting photoelectron angular distributions at specific photoelectron energies. The strategy refers to a robust and single parameter control using two ultra-short light pulses delayed in time. The first pulse prepares a superposition of a few ion rotational states, whereas the second pulse serves as a probe that gives access to a control of the molecular asymmetry parameter ÎČ\beta for individual rotational channels. This is achieved by tuning the time delay between the pulses leading to channel interferences that can be turned from constructive to destructive. The illustrative example is the ionization of the E(1ÎŁg+)E(1\Sigma_{g}^{+}) state of Li2_{2}. Quantum wave packet evolutions are conducted including both electronic and nuclear degrees of freedom to reach angle-resolved photoelectron spectra. A simple interference model based on coherent phase accumulation during the field-free dynamics between the two pulses is precisely exploited to control the photoelectron angular distributions from almost isotropic, to marked anisotropic

    Controlled deflection of cold atomic clouds and of Bose-Einstein condensates

    Full text link
    We present a detailed, realistic proposal and analysis of the implementation of a cold atom deflector using time-dependent far off-resonance optical guides. An analytical model and numerical simulations are used to illustrate its characteristics when applied to both non-degenerate atomic ensembles and to Bose-Einstein condensates. Using for all relevant parameters values that are achieved with present technology, we show that it is possible to deflect almost entirely an ensemble of 87^{87}Rb atoms falling in the gravity field. We discuss the limits of this proposal, and illustrate its robustness against non-adiabatic transitions

    Species-selective lattice launch for precision atom interferometry

    Get PDF
    Long-baseline precision tests based on atom interferometry require drastic control over the initial external degrees of freedom of atomic ensembles to reduce systematic effects. The use of optical lattices (OLs) is a highly accurate method to manipulate atomic states in position and momentum allowing excellent control of the launch in atomic fountains. The simultaneous lattice launch of two atomic species, as required in a quantum test of the equivalence principle, is however problematic due to crosstalk effects. In this article, we propose to selectively address two species of alkalines by applying two OLs at or close to magic-zero wavelengths of the atoms. The proposed scheme applies in general for a pair of species with a vastly different ac Stark shift to a laser wavelength. We illustrate the principle by studying a fountain launch of condensed ensembles of 87Rb and 41K initially co-located. Numerical simulations confirm the fidelity of our scheme up to few nm and nm s−1 in inter-species differential position and velocity, respectively. This result is a pre-requisite for the next performance level in precision tests.DAADDFG/SFB/geo-QDLR/50WM1131-1137Federal Ministry of Economic affairs and Energy (BMWi

    Reply to Comment on 'Species-selective lattice launch for precision atom interferometry'

    Get PDF
    Reply to: Alexander D Cronin and Raisa Trubko: Comment on 'Species-selective lattice launch for precision atom interferometry'. In: New Journal of Physics 18 (2016), Nr. 11, 118001. DOI: https://doi.org/10.1088/1367-2630/18/11/11800

    Bose-Einstein condensation in dark power-law laser traps

    Full text link
    We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order ℓ\ell allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams

    Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history

    Get PDF
    The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we generated a de novo genome assembly of the black rat, 67 ancient black rat mitogenomes and 36 ancient nuclear genomes from sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of mitochondrial DNA confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.Competing Interest StatementThe authors have declared no competing interest.- Results and Discussion -- The demographic history of Rattus rattus and its closely related species -- A global phylogeography of the black rat based on mitochondrial DNA -- Ancient genomes reveal the relationships of European black rats over space and time - Discussion - Method

    Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history

    Get PDF
    The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.Peer reviewe

    Reply to " Comment on 'Bose-Einstein condensation with a finite number of particles in a power-law trap' "

    No full text
    International audienceIn this reply we show that the criticisms raised by J. Noronha are based on a misapplication of the model we have proposed in [A. Jaouadi, M. Telmini, E. Charron, Phys. Rev. A 83, 023616 (2011)]. Here we explicitly discuss the range of validity of the approximations underlying our analytical model. We also show that the discrepancies pointed out for very small atom numbers and for very anisotropic traps are not surprising since these conditions exceed the range of validity of the model

    Reply to " Comment on 'Bose-Einstein condensation with a finite number of particles in a power-law trap' "

    No full text
    International audienceIn this reply we show that the criticisms raised by J. Noronha are based on a misapplication of the model we have proposed in [A. Jaouadi, M. Telmini, E. Charron, Phys. Rev. A 83, 023616 (2011)]. Here we explicitly discuss the range of validity of the approximations underlying our analytical model. We also show that the discrepancies pointed out for very small atom numbers and for very anisotropic traps are not surprising since these conditions exceed the range of validity of the model

    Autoionizing doubly-excited states of 3Σg− symmetry of H2

    No full text
    We report R-matrix calculations of doubly-excited 3ÎŁg− states of molecular hydrogen corresponding to 3d̃πnℓ̃π configurations. These states form Rydberg series converging to the 3d̃π series limit. They lie in the continuum of the doubly-excited states of 3ÎŁg− symmetry built on the 2p̃π ion core, and therefore they are autoionized. Calculations of resonance positions and widths are presented
    corecore